Geometry: Constructions

Construction 1 Given a segment, construct a segment equal to the given segment.

Given:

 \overline{AB}

Construct: A segment equal to \overline{AB}

Procedure:

- 1. Use a straightedge to draw a line. Call it l.
- 2. Choose any point on l and label it X.
- Set your compass for radius AB. Use X as center and draw an arc intersecting line I. Label the point of intersection Y.

 \overline{XY} is equal to \overline{AB} .

Justification: Since we used AB for the radius of $\bigcirc X$, \overline{XY} is equal to \overline{AB} .

Construction 2 Given an angle, construct an angle equal to the given angle.

Given:

LABC

Construct: An angle equal to \(\alpha ABC \)

Procedure:

- 1. Draw a ray. Label it RY.
- Using B as center and any convenient radius, draw an arc intersecting BA and BC. Label the points of intersection D and E.
- 3. Using R as center and the same radius as before, draw an arc intersecting \overrightarrow{RY} and label it \widehat{XS} , with S at the point of intersection.
- 4. Using S as center and a radius equal to DE, draw an arc that intersects \widehat{XS} at a point Q.
- 5. Draw RO.

 $\angle R$ is equal to $\angle B$.

Justification: If \overline{DE} and \overline{QS} are drawn, $\triangle DBE \cong \triangle QRS$ (SSS Postulate). Then $\overline{\angle} R = \angle B$.

Construction 3 Given an angle, bisect the angle.

Given: ∠ABC

Construct: The ray that bisects ∠ABC

B

Procedure:

- Using B as center and any convenient radius, draw arcs intersecting BA and BC in points X and Y.
- Using X and Y as centers and any convenient radius, draw arcs that intersect at a point Z.
- 3. Draw BZ.

BZ bisects LABC.

Justification: If \overline{XZ} and \overline{YZ} are drawn, $\triangle XBZ \cong \triangle YBZ$ (SSS Postulate). Then $\angle XBZ = \angle YBZ$, and \overline{BZ} bisects $\angle ABC$.

Construction 4 Given a point on a line, construct the perpendicular to the line at the given point.

Given: Point A on line I

Construct: The perpendicular to I at A

1 A

Procedure:

Bisect the straight angle whose vertex is A.

 \overrightarrow{AZ} is perpendicular to l at A.

Construction 5 Given a point outside a line, construct the perpendicular to the line from the point.

Given: Point B outside line !

Construct: The perpendicular to I from B

in Gallaria

Procedure:

- Using B as center and any convenient radius, draw arcs that intersect l in two points X and Y.
- Using X and Y as centers and any convenient radius, draw arcs that intersect at a point Z.
- 3. Draw BZ.

 \overrightarrow{BZ} is perpendicular to I.

Construction 6 Given a segment, construct the perpendicular bisector of the segment.

Given: CD

Construct: The perpendicular bisector of \overline{CD}

c was some D

Procedure:

 Using any convenient radius, construct two arcs having C as center and two arcs having D as center. Call the points of intersection X and Z.

2. Draw XZ.

 \overline{XZ} is the perpendicular bisector of \overline{CD} .

